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Transport in conventional metal

• DC transport in conventional metal is characterized by the Drude
formula

• 𝜏: the timescale for electrons to lose momentum to disorder, lattice 
or phonons etc. 

• In a Fermi liquid dominated by electron-electron Umklapp scattering, 
𝜏−1 ∝ 𝐴 + 𝐵𝑇2



Conventional transport (free particle)

Jan Zaanen, Science 2016𝛾𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟 ≫ 𝛾𝑒𝑒Disorder dominated:



Transport in ultra clean metal

• However, in an ultra clean metal, the total momentum of the 
electrons is almost conserved (assuming low-temperature and small 
FS)

• This leads to infinite DC conductivity in the Drude formula 𝜎 𝜔 ∼
𝜎0𝛿(𝜔)

• How do we probe a clean metal through transport?



Unconventional transport

Jan Zaanen, Science 2016𝛾𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟 ≪ 𝛾𝑒𝑒Interaction dominated:



Hydrodynamics

• When momentum-conserving 
electron-electron collisions 
dominate over other scattering 
mechanism, hydrodynamics 
emerge

• The electrons flow is governed 
by Navier-Stokes equation, just 
like water

神奈川沖浪裏 葛飾北斎
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Non-Fermi liquid

• In Landau’s FL theory, the electron-electron scattering rate (𝛾𝑒𝑒 ∼
𝑇2/𝐸𝐹) is still parametrically smaller than the energy of a 
quasiparticle 𝑇

• However, in the presence of strong interaction (e.g. near a quantum 
critical point), 𝛾𝑒𝑒 ≫ 𝑇, and the quasiparticle is destroyed

• If the interaction still conserves momentum hydrodynamics should 
still emerge? How is this different from FL hydrodynamics?



FL, Drude formula FL, Hydrodynamics

NFL, Drude formula?

Less disorder
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Interactio

n

?



Outline

• Fermi liquid Hydrodynamics

• Superballistic conduction in Graphene

• Tomographic transport and linear-in-T conductance

• Non-Fermi liquid Hydrodynamics
• Yukawa-SYK model of Ising-Nematic quantum critical point

• Boltzmann equation as an 1/N effective field theory

• Instability of Ising-Nematic QCP NFL



Crush course on Hydrodynamic 
Transport



What is hydrodynamics?

• Hydrodynamics describe the long wavelength physics based on 
conservation laws

• They are simple to write: Just continuity equations:

• Combining with constituent relations (E.g. Ԧ𝑗 = 𝑛𝑒 Ԧ𝑣), we can close the 
equations and solve for the dynamics



Ohmic vs Hydrodynamic transport

• Ohmic transport:

• Local field-current relation (Ohm’s 
law)

• Electron momentum is dissipated 
at every point in the bulk

• Stronger scattering => Less 
conductive

• Hydrodynamic transport

• Non-local field-current relation 
(Navier-Stokes Eq)

• Momentum does not dissipate in 
the bulk. It only happens at the 
boundary of the system

• Stronger scattering => More 
conductive



Interaction as a lubricant 

• Bulk scattering does not relax 
momentum nor the current

• Current is only dissipated at the 
boundary

• Individual electron is random walking 
along the stream line

• Stronger scattering => Harder to 
reach the boundary => Less 
dissipation



Non-local conductivity and Anomalous 
Conductance

• The NS equation yields a Ԧ𝑞-dependent conductivity:

• Therefore, the conductance 𝐺 depends on an external length scale 𝑊 
via the relation 𝐺 ∼ 𝜎(1/𝑊)
• E.g. in a constriction geometry

Width W



Super-Ballistic conduction!

• An interacting metal can be more conductive than a 
Fermi gas!

• Free particle: 
• Landauer (1957) and Sharvin (1965): Count how many 

standing waves are supported in the constriction

• Viscous fluid:

• Can be much larger when 𝑊 is large





What should the mean-free path be?

• The el-el mean free path can be extracted from 𝑙𝑒𝑒 = 4𝜂/(𝑛𝑚𝑒𝑣𝐹)

• From FL theory, we would expect 𝑙𝑒𝑒 ∝ 1/𝑇2

• But this does not quite fit the experiment

• What is missing?



Fermiology comes into play

• Fermion scattering is kinematically constrained for 2D convex FS 
beyond what FL theory requires

• Generic scattering (𝑘𝑖1 + 𝑘𝑖2 ≠ 0) does not cause dissipation:

• Only two scattering configurations:

• Forward scattering:  𝑘𝑓1 = 𝑘𝑖1, 𝑘𝑓2 = 𝑘𝑖2
• Particle exchange:  𝑘𝑓1 = 𝑘𝑖2, 𝑘𝑓2 = 𝑘𝑖1

𝑘𝑖1

𝑘𝑖2

𝑘𝑓1

𝑘𝑓2

𝑘𝑓2

𝑘𝑓1

or



Head-on Scattering 𝑘𝑖1 + 𝑘𝑖2 = 0

• Any head-on initial pair can scatter to any head-on pair

• However, head-on configurations have even parity, and they can’t relax 
odd parity deformations

• Similar reasonings apply to any convex, inversion-symmetric FS

𝑘𝑖1

𝑘𝑖2

𝑘𝑓1

𝑘𝑓2

…

P. J. Ledwith, HG and L. Levitov,  Annals of Physics 411, 167913 (2019)

D. L. Maslov, V. I. Yudson, and A. V. Chubukov, Phys. Rev. Lett. 106, 106403 (2011)

H.K. Pal, V. I. Yudson, D. L. Maslov, Lithuanian Journal of Physics (2012)



Long-lived odd-parity deformation

• Odd parity deformations of the FS are long lived (compared to 
quasiparticle lifetime 1/𝑇2)

Exactly conserved Exactly conserved Not conserved

Not conserved
Approx. conserved Approx. conserved



Boltzmann description

• These approximately conserved modes can be described by a 
linearized Boltzmann equation



Calculating the odd-m rates

• Apply Fermi’s Golden rule to the collision term

• The decay rates are eigenvalues of linearized 𝐼[⋅]

P. J. Ledwith, HG and L. Levitov,  Annals of Physics 411, 167913 (2019)



Conductivity 

• Solving the Boltzmann Eq., we obtain a scale-dependent viscosity

• The effective scattering rate is a continuous fraction:

P. Ledwith, HG, A. Shytov, Leonid Levitov, PRL 2019

Serhii Kryhin, Qiantan Hong and Leonid Levitov, arXiv:2310.08556



Two regimes of hydrodynamics

• Conventional Hydro (𝑘 → 0)

• Γ2 = 𝜆2 ∝ 𝑇2, should agree with FL

• Tomographic transport (𝑘 > 𝑙𝑡𝑜𝑚𝑜
−1 )

• We need to perform a non-perturbative summation of Γ2
• Γ2 𝑘 ∝ 𝑘1/3𝑇

• Experimental implications:
• Happens in a small device (shorter than 𝑙𝑡𝑜𝑚𝑜)

• Modifying 𝐺 ∝ 𝑊2 to 𝐺 ∝ 𝑊
5

3 (Hard to test)

• 𝐺 ∝ 𝑇, linear-in-temperature conductance in a FL!

P. Ledwith, HG, A. Shytov, Leonid Levitov, PRL 2019

Serhii Kryhin, Qiantan Hong and Leonid Levitov, arXiv:2310.08556



• Measure viscosity through 
magneto transport

• Allows subtraction of phonon 
background => Access larger 
temperature range

• Find linear-in-T scattering rate

arXiv:2407.05026

Monolayer Bilayer



Fluctuation Spectrum of Non 
Fermi-Liquids

HG, arXiv:2406.12967



Critical FS

• We study the toy model of Non-Fermi liquid: A Fermi surface coupled 
to a gapless dynamical boson (e.g. at a quantum critical point) at Q=0

• The model can be schematically written as 



The Migdal-Eliashberg Theory

• In many literature, the leading order physics of the critical FS is 
described by the Migdal-Eliashberg Theory: Vertex-corrections are 
ignored in the computation self-energies



Can the FL story generalize?

• The FL story depends on the Boltzmann equation, which is 
conventionally justified with the quasiparticle concept

• In a NFL without quasiparticle, there can be alternative Boltzmann 
formulation due to Prange and Kadanoff (1964), by projecting 
distribution function onto the FS

• Recently, there has been interest in utilizing the Boltzmann equation 
as a starting point for bosonization of FL and NFL



Yukawa-SYK model

• The Eliashberg theory can be made into a systematic large-N 
expansion using Yukawa-SYK model

• After averaging, the theory can be rewritten in terms bi-local variables

• The large-N saddle point is the Eliashberg equation
Ilya Esterlis, J. Schmalian, PRB 100, 115132 (2019) 

Yuxuan Wang and A. V. Chubukov, PRR 2, 033084 (2020) 

E. E. Aldape, T. Cookmeyer, A. A. Patel, and E. Altman, arXiv:2012.00763 

Ilya Esterlis, Haoyu Guo, Aavishkar Patel, Subir Sachdev PRB 103, 235129 (2021)

Zhengyan Darius Shi, Dominic V. Else, Hart Goldman, T. Senthil, Scipost 14,113(2023)



1/N Fluctuation = low-energy theory

• E.g. in the 0+1D SYK model, the 1/N effective theory turns out to be 
a black hole described by Schwarzian action

1/N



Emergence of Boltzmann equation

• In the Yukawa-SYK model, we recover the Boltzmann equation as 1/N 
fluctuation 

1/N

HG, arXiv:2406.12967



The Gaussian fluctuations

• The leading-order 1/N correction are the Gaussian fluctuations of the 
bilocal fields

• The Bethe-Salpeter kernel can be represented by Feynman diagrams

Maki-ThompsonDensity-of-States Aslamazov-Larkin



Diagonalizing the kernel

• To identify the low-energy fluctuations, we need to diagonalize the 
kernel 𝐾𝐵𝑆

• The first step is to define a good inner product on the space of two-
point functions

• This is equivalent to apply a suitable precondtioner 𝑀, so that we are 
diagonalizing 𝐿 = 𝐾𝐵𝑆 ∘ 𝑀

• The problem is setup so that 𝐿 has zero modes associated with 
conservation laws



Hierarchy of L

• We assume circular FS 

and consider 𝐿 → 𝐿(𝑚) in 
the m-th angular 
harmonic channel 

• We perform a double 
expansion of L in

• Proximity to the FS 
𝜉/𝑘𝐹𝑣𝐹

• Small scattering angle 𝜃 ∼
𝑞/𝑘𝐹

Forward Scattering:

𝑂(𝑞2) small angle 

scattering:

On FS

𝑂(
𝜉

𝑘𝐹𝑣𝐹
) away 

from FS

𝑂((
𝜉

𝑘𝐹𝑣𝐹
)2)

away from FS



Large number of zero modes at the leading 
order

• At zero CoM momentum 𝑝 = (𝑖Ω, 0), the 

leading order term 𝛿𝑞
0𝐿𝑚

(0)
 contains a large 

number of soft modes

• 𝛿𝑞
0𝐿𝑚

(0)
𝐹 = 0, 𝐹 = 𝜙(𝜃𝑘) is a function of 

angle on the FS only (indepdent of 𝜉, 𝜔)

• F parameterizes the deformation of the FS

• 𝛿𝑞
0𝐿𝑚

(0)
describes forward scattering limit, 

which naturally preserves the FS shape



Effective theory of the soft modes

• Functions of the form 𝐹 𝑖𝜔, 𝜉, 𝜃 = 𝜙(𝜃), are soft modes of the 
kernel 𝐿.

• The soft eigenvalues 𝜆𝑚 can be obtained by performing eigenvalue 
perturbation theory (details later)

• The low-energy effective theory can be obtained by projecting the 
action onto the soft mode manifold

• The EoM of this action is exactly Boltzmann equation, where 𝜆 plays 
the role of collision term



The collision rates

• The even-m collision rates are suppressed from the self-energy by the 
smallness of scattering angle

• Similar to FL, the odd-m rates are further suppressed due to 
convexity of the FS

Self-Energy Small-angle scattering

Self-Energy Small-angle scattering2nd order perturbation



Different regimes near Ising-Nematic QCP

• r is the tuning 
parameter (boson 
mass term)

• Region A: quantum 
critical NFL, Σ ∝
𝜔2/𝑧𝑏 ≫ 𝜔

• Region B:  
perturbative NFL 
with Σ ∝ 𝜔2/𝑧𝑏 ≪ 𝜔

• Region C: boson is 
gapped, but mediates 
small angle scattering



Estimating the collision rates

• The collision rates can be estimated by substituting appropriate scalings
for 𝑞 and 𝜉 at the QCP



NFL Hydrodynamics

• The hydrodynamics of the NFL can then be obtained from the 
Boltzmann formalism, with the NFL collision rates

G(T,W) in conventional hydro regime

𝑙𝑒𝑒 < 𝑙𝑡𝑜𝑚𝑜 < 𝑊

The different scaling exponents near the QCP 

can be experimental signature of a clean NFL



NFL Hydrodynamics

G(T,W) in tomographic regime

𝑙𝑒𝑒 < 𝑊 < 𝑙𝑡𝑜𝑚𝑜

There are two regimes in the 

strongly coupled region, 

depending on the type of 

dominating fluctuation:

Top: thermal fluctuation

Bottom: quantum fluctuation



Instability of the Ising-Nematic QCP

• Stability of the critical FS requires 
positive collision rates:

• All the even-m soft modes pass 
the stability test

• However, the odd-m modes of 
the NFL regime (A) is only stable 

if cos
4𝜋

𝑧𝑏
> 0, i.e. 2 < 𝑧𝑏 < 8/3



Instability of the Ising-Nematic QCP

• For a translational-invariant, Q=0 , critical, convex FS, 
the NFL regime can be stable at T=0 only if 2 <
𝑧𝑏 < 8/3 (ignoring SC)

• In particular, the 𝑧𝑏 = 3 QCP from the is unstable at T=0

• One possible numerical example is by Sam P. Ridgway and 
Chris A. Hooley [PRL 114, 226404 (2015)], who obtained 
𝑧𝑓 = 𝑧𝑏 /2 = 13/10 from functional RG for a FM QCP

• The NFL in Senthil’s continuous Mott transition has 𝑧𝑏 =
2+, which falls into the stability bound

• At finite T, the thermal fluctuation can stabilize the 
theory

Proposed Phase diagram at z=3



Conclusions

• A clean metal (FL or NFL) can show anomalous transport behaviors 
due to hydrodynamics

• In the hydrodynamic regime, the interaction lubricates instead of 
impeding transport
• The conductance 𝐺(𝑇,𝑊) shows anomalous scaling

• An experiment signature of clean NFL

• The NFL of the Ising-Nematic QCP is only stable at 𝑇 = 0 when 2 <

𝑧𝑏 <
8

3
, or when 𝑧𝑏 ≥ 3 and at finite T
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