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Transport in conventional metal

* DC transport in conventional metal is characterized by the Drude

formula
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e 7:the timescale for electrons to lose momentum to disorder, lattice
or phonons etc.

* In a Fermi liquid dominated by electron-electron Umklapp scattering,
771 o« A+ BT*



Conventional transport (free particle)

Jan Zaanen, Science 2016

Disorder dominated: ¥ icorder > Vee



Transport in ultra clean metal

e However, in an ultra clean metal, the total momentum of the

electrons is almost conserved (assuming low-temperature and small
FS)

* This leads to infinite DC conductivity in the Drude formula o(w) ~
00 (W)

* How do we probe a clean metal through transport!?



Unconventional transport

Interaction dominated: VYdisorder < Yee Jan Zaanen, Science 2016



Hydrodynamics

* When momentum-conserving
electron-electron collisions
dominate over other scattering
mechanism, hydrodynamics
emerge

* The electrons flow is governed
by Navier-Stokes equation, just
like water
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Non-Fermi liquid

* In Landau’s FL theory, the electron-electron scattering rate (Y, ~
T2 /ER) is still parametrically smaller than the energy of a
quasiparticle T

* However, in the presence of strong interaction (e.g. near a quantum
critical point), y.., > T, and the quasiparticle is destroyed

* If the interaction still conserves momentum hydrodynamics should
still emerge! How is this different from FL hydrodynamics?
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Outline

* Fermi liquid Hydrodynamics
* Superballistic conduction in Graphene
* Tomographic transport and linear-in-T conductance

* Non-Fermi liquid Hydrodynamics
* Yukawa-SYK model of Ising-Nematic quantum critical point
* Boltzmann equation as an |/N effective field theory

* Instability of Ising-Nematic QCP NFL



Crush course on Hydrodynamic
Transport



What is hydrodynamics!?

* Hydrodynamics describe the long wavelength physics based on
conservation laws

* They are simple to write: Just continuity equations:

O,g" = particle conservation

QMT“” — () momentum conservation

« Combining with constituent relations (E.g. ] = nev), we can close the
equations and solve for the dynamics



Ohmic vs Hydrodynamic transport

* Ohmic transport: * Hydrodynamic transport

* Local field-current relation (Ohm’s * Non-local field-current relation

law) (Navier-Stokes Eq)
j(@) = 0 E(7) nV*j(Z) = (ne)”E(Z)

* Electron momentum is dissipated * Momentum does not dissipate in
at every point in the bulk the bulk. It only happens at the

 Stronger scattering => Less boundary of the system
conductive  Stronger scattering => More

conductive



Interaction as a lubricant

* Bulk scattering does not relax
momentum nor the current

* Current is only dissipated at the
boundary

* Individual electron is random walking
along the stream line

* Stronger scattering => Harder to
reach the boundary => Less
dissipation




Non-local conductivity and Anomalous
Conductance

* The NS equation yields a g-dependent conductivity:

n?e?
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* Therefore, the conductance G depends on an external length scale W
via the relation G ~ o (1/W)

* E.g.in a constriction geometry

nle?W? idth W
Gviscoous —
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Super-Ballistic conduction!

* An interacting metal can be more conductive than a
Fermi gas!

* Free particle: S —
* Landauer (1957) and Sharvin (1965): Count how many

standing waves are supported in the constriction

2e2  2W
Ghallistic = T X E

* Viscous fluid:

mn2e?W? PNA S
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Superballistic flow of viscous electron fluid
through graphene constrictions
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What should the mean-free path be!

* The el-el mean free path can be extracted from [,, = 4n/(nm, vg)

* From FL theory, we would expect [, o< 1/T? N

* But this does not quite fit the experiment

Y o Viscosity (m?s™")

e—e scattering length, I, (Lm)

T T T |
100
R, Temperature (K)

* What is missing?

@ Experiment

Many-body theory
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Fermiology comes into play

* Fermion scattering is kinematically constrained for 2D convex FS
beyond what FL theory requires

* Generic scattering (k;1 + k;» # 0) does not cause dissipation:
* Only two scattering configurations:
* Forward scattering: kr; = ki, kry = k7
* Particle exchange: kfy = kip, krp = kg
kii kfq
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Head-on Scattering k;; + k;p =

* Any head-on initial pair can scatter to any head-on pair

* However, head-on configurations have even parity, and they can’t relax
odd parity deformations

* Similar reasonings apply to any convex, inversion-symmetric FS
P.J. Ledwith, HG and L. Levitov, Annals of Physics 411, 167913 (2019)
D. L. Maslov,V. |.Yudson, and A.V. Chubukov, Phys. Rev. Lett. 106, 106403 (201 1)

H.K. Pal,V. |.Yudson, D. L. Maslov, Lithuanian Journal of Physics (2012)
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Long-lived odd-parity deformation

* Odd parity deformations of the FS are long lived (compared to

quasiparticle lifetime 1/T?)
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Boltzmann description

* These approximately conserved modes can be described by a
linearized Boltzmann equation

f f t ZC 9k me zm@k
O f + R Vf=—I[f] Colhslon operator I|fn.] = —Amfm

Ao = \; = 0 particle and momentum conservation

Aoy Aa, - ~T?/Ep FL theory

A3, A5, -+ < T?/Ep approximate conserved modes



Calculating the odd-m rates

* Apply Fermi’s Golden rule to the collision term

d*p;d®py d°py
I[f(pi)] = f J(zﬂ_ )6 ! (Wi’j’—n'j — Wﬁ—)i’j’)

2 / ’
Wiiryp = %IVlzﬁﬂ(l —fi)1—fy)d (Z 8a) (27 )*s (Z Pa)

o

* The decay rates are eigenvalues of linearized I]-]

mA T4

odd
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P.J. Ledwith, HG and L. Levitov, Annals of Physics 411, 167913 (2019)



Conductivity

* Solving the Boltzmann Eq., we obtain a scale-dependent viscosity

2
n?e? nmevp
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* The effective scattering rate is a continuous fraction:
k*vs /4

k202, /4
| F
A3 Aat...

o (k)

[o(k) = Aa H

P. Ledwith, HG, A. Shytoyv, Leonid Levitov, PRL 2019
Serhii Kryhin, Qiantan Hong and Leonid Levitov, arXiv:2310.08556



Two regimes of hydrodynamics

['a(k) = A2 A
* Conventional Hydro (k — 0) A3
e I, = A, « T?, should agree with FL

2,,2
k v /4
k2v%, /4
Ag+...

e Tomographic transport (k > l;.,)
* We need to perform a non-perturbative summation of I,
e T, (k) « k1/3T
* Experimental implications:

* Happens in a small device (shorter than ;)

5
* Modifying G x W? to G o W3 (Hard to test)
* G xT,linear-in-temperature conductance in a FL!

P. Ledwith, HG, A. Shytov, Leonid Levitov, PRL 2019
Serhii Kryhin, Qiantan Hong and Leonid Levitov, arXiv:2310.08556



Quantitative measurement of viscosity in two-dimensional electron fluids arXiv:2407.05026

Yihang Zeng!®, Haoyu Guo?*, Olivia M. Ghosh!, Kenji Watanabe?,
Takashi Taniguchi®, Leonid S. Levitov?, and Cory R. Dean'*
! Department of Physics, Columbia University, New York, NY, USA
? Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
3 National Institute for Materials Science, Tsukuba, Japan
*Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and
® Present address: Department of Physics, Purdue University, West Lafayette, Indiana, USA

(Dated: July 9, 2024)
* Measure viscosity through
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Fluctuation Spectrum of Non
Fermi-Liquids

HG, arXiv:2406.12967



Critical FS

* We study the toy model of Non-Fermi liquid: A Fermi surface coupled
to a gapless dynamical boson (e.g. at a quantum critical point) at Q=0

* The model can be schematically written as

£ (0, + ) + %@(a% + 7 1) + goplep

A critical boson ¢

Occupied states . .
e(k) <0 /( ﬁ e I[sing-Nematic order
w e Ferrormagnetic order
R errormagnetic orde
kJ e Transverse component
-~ of abelian or non-abelian

Empty states

) >0 cgauge field




The Migdal-Eliashberg Theory

* In many literature, the leading order physics of the critical FS is
described by the Migdal-Eliashberg Theory:Vertex-corrections are
ignored in the computation self-energies

Exactly at the QCP

-
'- h‘

PN (i, k) = —isgn(w)|w|* *wp 2/
Y — @ > G ® ‘Q‘
I1(:€2, q) oc ——
q
T — NFL below scale wp: Y (tw) o \w|2/zb > |w

Local bosonic Hamiltonian — 2z, = 3



Can the FL story generalize?

* The FL story depends on the Boltzmann equation, which is
conventionally justified with the quasiparticle concept

* In a NFL without quasiparticle, there can be alternative Boltzmann
formulation due to Prange and Kadanoff (1964), by projecting
distribution function onto the FS

* Recently, there has been interest in utilizing the Boltzmann equation
as a starting point for bosonization of FL and NFL

Bosonization of Non-Fermi Liquids Nonlinear bosonization of Fermi surfaces: The method of coadjoint orbits

SangEun Han®, Félix Desrochers @, and Yong Back Kim Luca V. Delacrétaz®,"? Yi-Hsien Du.! Umang Mehta,!3 and Dam Thanh Son'->*

Effective field theory of Berry Fermi liquid from the coadjoint orbit method Coadjoint-orbit effective field theory of a Fermi surface in a weak magnetic field

Xiaoyang Huang Mengxing Yel'* and Yuxuan Wang?:f



Yukawa-SYK model

* The Eliashberg theory can be made into a systematic large-N
expansmn using Yukawa- SYK model

L= zw R vmz Su(02 + T md) g+ Zg’”lqw ¥;

171
. After averaging, the theory can be rewritten in terms bi-local variables

1 1 f /
NS[G’ ¥,D, 1] =—Indet ((0, + e —p)d(x —2') + X) + 5 Indet ((—07 + w; +m;) 6(z — 2') —1II)

2

Tr(E-G)Jr;Tr (H-D)Jr%Tr (GD)-G) .

* The large-N saddle point is the Eliashberg equation

llya Esterlis, J. Schmalian, PRB 100, 115132 (2019)

Yuxuan Wang and A.V. Chubukov, PRR 2, 033084 (2020)

E.E.Aldape, T. Cookmeyer; A. A. Patel, and E. Altman, arXiv:2012.00763

llya Esterlis, Haoyu Guo, Aavishkar Patel, Subir Sachdev PRB 103, 235129 (2021)
Zhengyan Darius Shi, DominicV. Else, Hart Goldman, T. Senthil, Scipost 14,113(2023)



|/N Fluctuation = low-energy theory

* E.g.in the 0+1D SYK model, the I/N effective theory turns out to be
a black hole described by Schwarzian action




Emergence of Boltzmann equation

* In the Yukawa-SYK model, we recover the Boltzmann equation as |/N
fluctuation

Occupied states

/C@ -+ Q|

Empty states

N d*p NdO, ,
S]-_';lla*-,hbmg /(2’}1’)?/ 2 (Q(}b(eka_p))

Q +ivg - P+ Aia,. ) ¢(Or:p) ,

HG, arXiv:2406.12967



The Gaussian fluctuations

* The leading-order |/N correction are the Gaussian fluctuations of the

bilocal fields
N

625 — 5 5G(£27£1)KBS($17372;3737334)5G(x37:1:4)

L1,r2,Tr3,T4

* The Bethe-Salpeter kernel can be represented by Feynman diagrams

Kps = Ws ' — Wyt — War

— AN e —
— A A
Wy = Wat = WaL = T T ;}{IJ:
> et VA VA A — —
Density-of-States Maki-Thompson Aslamazov-Larkin




Diagonalizing the kernel

* To identify the low-energy fluctuations, we need to diagonalize the
kernel Kgg

* The first step is to define a good inner product on the space of two-

point functions <(5G1 (5G2>

* This is equivalent to apply a suitable precondtioner M, so that we are
diagonalizing L = Kgzgo M

* The problem is setup so that L has zero modes associated with
conservation laws L1l =0 particle conservation

_)_

Lik] =0 momentum conservation




Hierarchy of L

* We assume circular FS
and consider L — L) jn
the m-th angular
harmonic channel

* We perform a double
expansion of L in

* Proximity to the FS
$/kpvp

* Small scattering angle 6 ~
q/kr

- 0()?)
On FS from FS away from FS
L,=L9 + W 4+ 1@

m m T

Forward Scattering: (SUL 0) (SULm (SU 1,2

T m

+ + +
0(g?) small angle (5 L(U (5 L(l) (5 L(Z)

scatterin g: m m 1T

+ - +



Large number of zero modes at the leading

order

* At zero CoM momentum p = (if},0), the
: 07(0) :
leading order term 0, L,,” contains a large
number of soft modes
. 53L$,2) |F] = 0,F = ¢(6) is a function of
angle on the FS only (indepdent of ¢, w)
* F parameterizes the deformation of the FS

. 68L$,2) describes forward scattering limit,
which naturally preserves the FS shape
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Effective theory of the soft modes

* Functions of the form F(iw, &,0) = ¢(0), are soft modes of the
kernel L.

* The soft eigenvalues A,, can be obtained by performing eigenvalue
perturbation theory (details later)

* The low-energy effective theory can be obtained by projecting the
action onto the soft mode manifold

d®p Ndéo
SEliashberg =——/ : / £ (Q6(0x: —p))

(Q + v - P+ )\—-;_agh) ¢(Ok:p) ,

* The EoM of this action is exactly Boltzmann equation, where A plays
the role of collision term




The collision rates

* The even-m collision rates are suppressed from the self-energy by the
smallness of scattering angle

162 L)1 2 (42
)\?e?;/en _ < ‘ q ‘ > X CfQQ/zb > m gq >
(1]1) K

Self-Energy  Small-angle scattering

* Similar to FL, the odd-m rates are further suppressed due to
convexity of the FS
2 2
kpvg kp

Self-Energy 2" order perturbation Small-angle scattering

Aodd o Q2% x m?(m* — 1)



Different regimes near Ising-Nematic QCP

* r is the tuning
parameter (boson
mass term)

* Region A: quantum
critical NFL, X «

w?2/%b > o

* Region B:
perturbative NFL
with 2 « w?/% & w

* Region C:boson is
gapped, but mediates
small angle scattering

()

. PNFL(B)
Y~ w? <

Wwp
Ordered % NFL(A) /  FL(C)
Y~ w2/z:1; 2 ~ _I_ (A}Q
>> W



Estimating the collision rates

* The collision rates can be estimated by substituting appropriate scalings
for g and & at the QCP

g~ Q3 &~ Q when Q> (i) ¢ ~ 0%/3 when Q < 3(iQ)

even odd
)\m . . /\m t
PNFL(B) PNFL(B)
m2 Q4/zb m6 QQ+4/zb :::
wp S
Ordered % NFL(A) /  FL(C) Ordered % NFL(A) [  FL(C)
2 2 5 4
m2Q4/Zb m (Q + Q) ) m698/zr’ mG(Q + 0 )
WFL, WL
T ;:C



NFL Hydrodynamics

* The hydrodynamics of the NFL can then be obtained from the
Boltzmann formalism, with the NFL collision rates

G(T,W) in conventional hydro regime

lee < ltOTTLO < W

Ordered NFL(A)
R

WEFL

W2T2 W2T2

FL(C)

LS

FL(D)

The different scaling exponents near the QCP
can be experimental signature of a clean NFL



NFL Hydrodynamics

G(T,W) in tomographic regime
lee < W < ltOTTlO
PNFL(B) | .
W7/5T(8—32b)/(5zb):; W5/3T

.............................

Ordered % NFL(A) [  FL(C) . FL(D)

L oprspuseo f There are two regimes in the
Vo " : strongly coupled region,
WEL depending on the type of
\ TSR/ (5) dominating fluctuation:

Q
.
Q
“ .
.

Top: thermal fluctuation
T LS Bottom: quantum fluctuation



Instability of the Ising-Nematic QCP

. . . W
» Stability of the critical FS requires A "‘
positive collision rates:

R (12 = w4+ 10) > 0 PNFL(B)
Q2—|—4/zb
* All the even-m soft modes pass ;
the stability test R wp
* However, the odd-m modes of Ordered NFL(A)
the NJ;I{ regime (A) is only stable Q¥ /
if cos— > O, e.2 < Zp < 8/3 WFL

Zp



Instability of the Ising-Nematic QCP

* For a translational-invariant, Q=0 , critical, convex FS,
the NFL regime can be stable at T=0 only if 2 <
z, < 8/3 (ignoring SC)
* In particular, the z;, = 3 QCP from the is unstable at T=0

* One possible numerical example is by Sam P. Ridgway and
Chris A.Hooley [PRL | 14,226404 (2015)], who obtained

zg = zp /2 = 13/10 from functional RG for a FM QCP

* The NFL in Senthil’s continuous Mott transition has z; =
27, which falls into the stability bound

T
e At finite T, the thermal fluctuation can stabilize the
theory

Proposed Phase diagram at z=3

PNFL(B) onp

-~ Tl ' FL(D)
NFL(A) Jwp !

Unstable " FL(C)
Ordered !




Conclusions

* A clean metal (FL or NFL) can show anomalous transport behaviors
due to hydrodynamics

* In the hydrodynamic regime, the interaction lubricates instead of
impeding transport
* The conductance G (T, W) shows anomalous scaling
* An experiment signature of clean NFL

* The NFL of the Ising-Nematic QCP is only stable at T = 0 when 2 <
zZp < g, or when z;, = 3 and at finite T
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